
Lecture 05: Chernoff Bound: An Introduction
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Introduction

Let X represent the Bern (p) random variable
Let X(1), . . . ,X(n) represent n independent and identical copies
of the random variable X
Let Sn := X(1) +· · ·+ X(n) represent the sum of these n
random variables
Observe that Sn is a random variable over the sample space
{0, 1, . . . , n} with mean E [Sn] = np

For example, if X represents a coin-toss, then Sn is a random
variable representing the number of observed Heads when n
coin-tosses are performed
How does the random variable Sn concentrate around its
mean? What is the probability of Sn to be “far” from the
expected value?
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Analysis using Markov Bound

One can use Markov bound to deduce

P
[
Sn > λ · (np)

]
6

1
λ
.

Can we do better?
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Analysis using Chebyshev’s Inequality I

By Chebyshev’s Inequality, we have

P
[
|Sn − np| > t

]
6

Var [Sn]

t2
.
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Analysis using Chebyshev’s Inequality II

What is Var [Sn]?

Var [Sn] = E
[
S2
n

]
−
(
E [Sn]

)2
= E


 n∑

i=1

X(i)

2
− (np)2

= E

 n∑
i=1

X(i)2 +
∑
i 6=j

X(i)X(j)

− n2p2

= n · E
[(

X(1)
)2
]

+ n(n − 1) · E
[
X(1)X(2)

]
− n2p2

= n · p + n(n − 1) · p2 − n2p2 = n · p(1− p).
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Analysis using Chebyshev’s Inequality III

Think: The probability of Sn being Θ
(√

np(1− p)
)
far from

the mean is at most a constant.

Think: Can we use higher moments to get better bounds?

Think: Let (X1, . . . ,Xn) be a joint distribution and
Sn =

∑n
i=1 Xi . Suppose the marginals Xi = Bern (p) and the

random variables Xi and Xj are pair-wise independent when
j 6= i . Can we still apply this estimation technique?

Chernoff: Intro



A Large Deviation Bound

Observe that

P [Sn > k] =
n∑

i=k

(
n

i

)
· pi (1− p)n−i .

Claim (
n

k

)
· pk(1− p)n−k 6 P [Sn > k] 6

(
n

k

)
· pk .

Think: How to prove this claim?
Think: For what values of p and k is the upper bound
meaningful? Hint: Use Stirling’s formula.
Think: When p = 1/2, for what values of k is the upper
bound < 1?

Chernoff: Intro



Using Stirling’s Approximation I

Our objective is to study the expression

P [Sn > k] =
n∑

i=k

(
n

i

)
· pi (1− p)n−i .

It is obvious that this expression is at least the term(n
k

)
· pk(1− p)n−k .

In homework, we lower-bounded this term by

1√
8np′(1− p′)

exp
(
−nDKL

(
p′, p

))
,

where p′ = k/n and DKL (a, b) = a ln
(
a
b

)
+ (1− a) ln

(
1−a
1−b

)
represents the Kullback–Leibler divergence
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Using Stirling’s Approximation II

Therefore, to obtain a tight upper bound of the original
expression, we should aim to obtain an upper bound that is in
terms of exp

(
−nDKL

(
p′, p

))
Towards this objective, we prove the following upper bound on
the j-th term of the summation

Claim
For j > 0, we have(

n

k + j

)
· pk+j(1− p)n−k−j 6 ρj ·

(
n

k

)
· pk(1− p)n−k ,

where ρ = 1−p′
p′ ·

p
1−p and p′ = k/n.

Think: Why is ρ < 1, if p′ = k/n > p?
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Using Stirling’s Approximation III

Therefore, we have

Theorem

P [Sn > k] <
1

1− ρ
·
(
n

k

)
· pk(1− p)n−k

6
1

1− ρ
· 1√

2πnp′(1− p′)
exp

(
−nDKL

(
p′, p

))
=

p′(1− p)

(p′ − p)
· 1√

2πnp′(1− p′)
exp

(
−nDKL

(
p′, p

))
,

where ρ = 1−p′
p′ ·

p
1−p and p′ = k/n.

The first inequality follows from the claim above. The second
inequality is an estimation using the Stirling’s approximation,
which we proved in homework.
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Using Stirling’s Approximation IV

Observe that if p′ is a constant > p, then
1 The lower and the upper bounds are within a constant factor

of each other!
2 The probability is exponentially decreasing in n.

The conclusions are summarized in the next result
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Using Stirling’s Approximation V

Lemma (Conclusions)

Let Sn = X(1) +· · ·+ X(n), where X = Bern (p).
1

P [Sn > k] 6

(
n

k

)
pk .

2

1 6
P [Sn > k](

n
k

)
pk(1− p)n−k

6
1

1− ρ
,

where ρ = 1−p′

p′ · p
1−p and p′ = k/n.

3 (
n

k

)
pk(1− p)n−k =

Θ(1)√
np′(1− p′)

· exp
(
−n ·DKL

(
p′, p

))
,

where DKL (a, b) = a ln
(
a
b

)
+ (1− a) ln

(
1−a
1−b

)
and p′ = k/n.

Chernoff: Intro


