


Introduction

o Let X represent the Bern (p) random variable

o Let XM ... X(" represent n independent and identical copies
of the random variable X

o Let S, := XM +... 4+ X(" represent the sum of these n
random variables

@ Observe that S, is a random variable over the sample space
{0,1,...,n} with mean E[S,] = np

@ For example, if X represents a coin-toss, then S, is a random
variable representing the number of observed Heads when n
coin-tosses are performed

@ How does the random variable S, concentrate around its
mean? What is the probability of S, to be “far’ from the
expected value?
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Analysis using Markov Bound

@ One can use Markov bound to deduce

P[Sh=A-(np)] <

>

@ Can we do better?
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Analysis using Chebyshev's Inequality |

@ By Chebyshev's Inequality, we have
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Analysis using Chebyshev's Inequality |l

e What is Var [S,]?

Var [S,] = E [Sﬂ — (E[S))?

=E (i X(i)) — (np)?
i=1

—F ixuﬂ +3 mem} — n?p?
| i=1 ij
=08 | (x0)°] 4 aln - 1) B [x02] - 27

=n-p+n(n—1)-p>—n°p’ =n-p(1-p).
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Analysis using Chebyshev's Inequality Il

@ Think: The probability of S, being © ( np(l — p)) far from
the mean is at most a constant.
@ Think: Can we use higher moments to get better bounds?

e Think: Let (Xy,...,X,) be a joint distribution and
Sp = >_7_1 X;. Suppose the marginals X; = Bern (p) and the
random variables X; and X; are pair-wise independent when
Jj #i. Can we still apply this estimation technique?
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A Large Deviation Bound

Observe that

@ Think: How to prove this claim?

@ Think: For what values of p and k is the upper bound
meaningful? Hint: Use Stirling’s formula.

@ Think: When p = 1/2, for what values of k is the upper
bound < 17
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Using Stirling's Approximation |

@ Our objective is to study the expression

P[S, > k] = Z (’7) (1= py

i=k
@ ltis obV|ous that this expression is at least the term
n) n k
o In homework, we lower-bounded this term by
1

————exp(—nD ’, ),
8o (1 p)) P( KL (P P)

where p’ = k/n and Dk, (a, b) = aln (2) + (1 — a)In (:{:Z>
represents the Kullback—Leibler divergence

Chernoff: Intro



Using Stirling's Approximation |l

@ Therefore, to obtain a tight upper bound of the original
expression, we should aim to obtain an upper bound that is in

terms of exp (—nDKL (v, p)>

@ Towards this objective, we prove the following upper bound on
the j-th term of the summation

For j > 0, we have

<k i;) PP < (Z) P - p)" K,

where p = 1;,”/ c ﬁ and p' = k/n.

Think: Why is p < 1,if p' = k/n > p?
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Using Stirling’'s Approximation ||

@ Therefore, we have

1 n
P n>k . . kl_ n—k
5>k < 1= (1) -#1-p)
1 1
< . exp | —nD i
1= VoG p( KL (P p))
P'(1-p) 1

CED RN (=Dt (61,))

where p = 1;,”l 125 and p' = k/n.

The first inequality follows from the claim above. The second
inequality is an estimation using the Stirling’s approximation,
which we proved in homework.
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Using Stirling’s Approximation IV

@ Observe that if p’ is a constant > p, then

© The lower and the upper bounds are within a constant factor
of each other!

@ The probability is exponentially decreasing in n.

@ The conclusions are summarized in the next result
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Using Stirling's Approximation V

Lemma (Conclusions)

Let S, = XM ... 4 X" where X = Bern (p).

Q
P[S, > k] < (Z)pk.
Q
P[S, > K] < 1
S Pa-pE Ty
where p = 1;,”/ . lfpp and p' = k/n.
(3]

(Z) pK(1—p)" k= m - exp (—n - Dk, (p’,p)) :

where Dxy, (a, b) = aln (2) + (1 — a)In (%:Z) and p’ = k/n.
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